Electrophilic Aromatic Substitution $-S_E^2$

Mechanisms of Reaction

Ingold-Hughes (original idea)

• Advantage: aromaticity is mantained in the direct displacement

Melander

 Secondary kinetic isotopic effect for nitration and bromination of aromatics

Reaction	k _H /k _D
Benzene + HNO_3/H_2SO_4	0.89
Toluene + $NO_2^+BF_4^-$	0.85

Modified Ingold-Hughes Mechanism

 σ -Complex : strong bonding between reactants

"Accepted" Mechanism for Nitration Ingold-Hughes (Polar) Mechanism $HNO_3 + HA \iff H_2NO_3^+ + A^-$ (1) $H_2NO_3^+ \xrightarrow{k_1} NO_2^+ + H_2O$ (2) $ArH + NO_2^+ \xrightarrow{k_R} ArHNO_2^+$ (3)**Reaction Intermediate** $ArHNO_2^+ + A^- \longrightarrow ArNO_2 + HA$ (4) $HNO_3 + ArH \longrightarrow ArNO_2 + H_2O$ Wheland Intermediate **Isolated** or $ArHNO_2^+ \iff$ Wheland Intermediate Arenium ion (Olah) detected σ Complex (H. C. Brown)

Modified Mechanisms

$$ArH + NO_2^+ \xrightarrow{\kappa_1} ArH.NO_2^+$$

Complex

Complex σ

 \mathbf{k}_2

π Complex
 Interaction between reactants
 π system is involved with the NO₂⁺ as a whole

(Olah)

Encounter Pair

- No interaction between the reactants
 - Random collision of species leads to the σ complex
- Reactants are trapped into the solvent cage (Schofield)

SET

- Charge Transfer complex
- Formation of ArH⁺ and NO₂
 Depends on ionization potential of the aromatic

(Kerner, Weiss, Perrin, Eberson, Kochi)

SET Mechanism

- Kenner (1945) and Weiss (1946)
 - Single Electron Transfer from ArH to NO₂⁺

• Perrin (1977)

- Nitronaphthalene from naphthalene under NO₂ and electrolysis
- Same product ratio for α and β (10:1) nitronaphthalene as that found in HNO₃/H₃CCN

ArH + NO₂⁺
$$\stackrel{k_{SET}}{\longrightarrow}$$
 ArH⁺ + NO₂ $\stackrel{k_{colapse}}{\longrightarrow}$ $\stackrel{r''H^{+''}}{\longrightarrow}$ $\stackrel{r''H^{+''}}{\longrightarrow}$ $\stackrel{r''H^{+''}}{\longrightarrow}$ $\stackrel{r''H^{+''}}{\longrightarrow}$ $\stackrel{r''H^{+''}}{\longrightarrow}$ (Single Electron Transfer) σ Complex

Oxidation potentials of aromatics more activated than toluene are lower than oxidation potentials of NO_2

Perrin, C. L.; J. Am. Chem. Soc. 1977, 99, 5516

SET Mechanism

- Kochi, 1981
 - Nitration with NO_2Y (Y=OH, OAc, NO_3 , Cl, Py, C(NO_2)₃)
 - NO_2Y + aromatics \rightarrow Observation of absorption bands in the UV/Vis spectrum

Typical for Charge Transfer complexes

Problems:

small k predicted for an outer sphere complex (Marcus Theory) Explain low ipso substitution despite the high spin density on this position

Mechanistics Aspects

Initial approach: *ab initio/DFT* calculations

Unified Mechanistic Concept of Electrophilic Aromatic Nitration: Convergence of Computational Results and Experimental Data

Pierre M. Esteves,^{*,†,‡,⊥} José Walkimar de M. Carneiro,[§] Sheila P. Cardoso,[§] André G. H. Barbosa,[‡] Kenneth K. Laali,[∥] Golam Rasul,[†] G. K. Surya Prakash,[†] and George A. Olah^{*,†}

J. AM. CHEM. SOC. 2003, 125, 4836-4849

Initial Approach: π Complexes?

B3LYP/6-311++G**//B3LYP/6-31++G** calculations

Key intermediates

Unoriented complex \rightarrow Electrostatic nature (π) Oriented complex \rightarrow SET intimate pair

Avoided crossing between different electronic states

Ion-Molecule Reaction in the Gas Phase: Pentaquadrupole MS Colaboration with Prof. Marcos N. Eberlin (State University of Campinas – Brazil)

Extrel Pentaquadrupole QqQqQ Mass Spectrometer (MS³)

Eberlin, M. N. Mass Spectrom. Reviews 1997, 16, 113

Extrel Pentaquadrupole QqQqQ Mass Spectrometer (MS³)

Reaction of Benzene with NO_2^+

SET is dominant

Ion-Molecule Reaction: Solvent Effects

MS/MS of m/z 124

Does SET thermodynamically feasible? Ionization Energy (Potential) for ionization in the Gas Phase

$$\cdot NO_2 \rightarrow NO_2^+ + e \qquad IE_1$$

ArH $\rightarrow ArH^+ + e \qquad IE_2$

 $NO_{2}^{+} + e \rightarrow NO_{2} -IE_{1}$ + ArH \rightarrow ArH⁺ + e IE₂

 $NO_2^+ + ArH \rightarrow NO_2^- + ArH^+$

 $\Delta H_{reaction} \approx IE_2 - IE_1 = \Delta IE$

Substrate	Ionization Energy (IE) (eV)ª	$\frac{\Delta IE \text{ for}}{\text{Reaction with}}$ $\frac{NO_2^+}{(eV)}$	$\begin{array}{c} \Delta IE \ for \\ Reaction \ with \\ NO_2^+ \ (kcal/ \\ mol) \end{array}$
$NO_2 \rightarrow NO_2^+ + e$	9.586 ± 0.002	0.000	0.00
Benzene $\rightarrow C_6 H_6^+ + e$	9.24378 ± 0.00007	-0.342	-7.89
Toluene $\rightarrow C_7 H_8^+ + e$	$\boldsymbol{8.828 \pm 0.001}$	-0.758	-17.48
mesitylene $\rightarrow C_9 H_{12}^+ + e$	$\textbf{8.40} \pm \textbf{0.01}$	-1.186	-27.35
$PhNH_2 \rightarrow PhNH_2^+ + e$	7.720 ± 0.002	-1.866	-43.03
PhOMe \rightarrow PhOMe ⁺ + e	$\textbf{8.20} \pm \textbf{0.05}$	-1.386	-31.96
naphthalene $\rightarrow C_{10}H_8^+ + e$	$\begin{array}{c} 8.1442 \pm 0.0009 \\ 8.141 \pm 0.01 \end{array}$	-1.442	-33.25
Nitrobenzene $\rightarrow C_6 H_5 NO_2^+ + e$	$\textbf{9.94} \pm \textbf{0.08}$	+0.354	+8.16
1,3-din itrobenzene $\rightarrow C_6 H_4 N_2 O_4^+ + e$	10.4	+0.814	+18.77
$C_6H_5CN \rightarrow C_6H_5CN^+ + e$	9.73 ± 0.01	+0.144	+3.32
$C_6H_5CF_3 \rightarrow C_6H_5CF_3^+ + e$	9.685 ± 0.005	+0.099	+2.28
fluorbenzene $\rightarrow C_6 H_5 F^+ + e$	9.20 ± 0.01	-0.386	-8.90
chlorobenzene → C ₆ H ₅ Cl ⁺ + e	9.07 ± 0.02	-0.516	-11.9
bromobenzene → C ₆ H ₅ Br ⁺ + e	9.00 ± 0.03	-0.586	-13.5
iodobenzene $\rightarrow C_6 H_5 I^+ + e$	$\textbf{8.72} \pm \textbf{0.04}$	-0.866	-20.0

Data from NIST database: http://webbook.nist.gov/chemistry

Nitration of Activated Aromatics

Nitration of Activated Aromatics

Nitration of Halo-Aromatics: PhF

MS/MS of m/z 112

Nitration of Halo-Aromatics: PhCl

Nitration of Halo-Aromatics: PhBr

Nitration of Halo-Aromatics: PhI

Nitration of Deactivated Aromatics

Proposal

Aprotic polar solvent

ProposalProtic polar solvent

SET x Solvation

Easy to understand some "strange" behaviors

Rearrangements

V. A. Koptyug, Top. Curr. Chem **1984**, *122*, 1 Detsina and Koptyug, Zh. Org. Khim. **1972**, *8*, 2158

¹⁸O isotope study

Detsina, Sidorova, Panova, Malykhin, Shakirov *Zh. Org. Khim.* **1979,** *15*, 1887

Proposal: Distinct Reaction Intermediates

Three distinct intermediates before proton elimination

Frontier MO and its relation to SET

Donor (D) Acceptor (A)

(a) Ground State: $|NO_2^+, C_6H_6>$

(b) Ground State: $c_1 |NO_2^+, C_6H_6 > + c_2 |NO_2, C_6H_6^+ > + \dots$

HOMO of Benzene

Symmetric

Antisymmetric

E = -0,329 Hartrees

E = -0,329 Hartrees

Jean, Y.; Volatron, F.; An introduction to molecular orbitals; Oxford University Press; New York, 213, 1993.

Energy (a.u.) of MO's for the aromatic substrates

Substrate	HOMO	HOMO - 1
Benzene	-0,329 (S)	-0,329 (A)
Toluene	-0,317 (S)	-0,328 (A)
Aniline	-0,290 (S)	-0,330 (A)
Phenol	-0,310 (S)	-0,338 (A)
Fluorbenzene	-0,334 (S)	-0,347 (A)
Clorobenzene	-0,333 (S)	-0,347 (A)
Bromobenzene	-0,330 (S)	-0,348 (A)
Nitrobenzene	-0,365 (A)	-0,374 (S)
Benzaldehyde	-0,346 (A)	-0,350 (S)
rifluormethyl)benzene	-0,352 (A)	-0,357 (S)

Analysis of symmetry and energy of selected MOs

Donors: CH₃, NH₂, OH, F, Cl and Br. **Acceptors:** NO₂, CHO and CF₃.

Regioselectivity: SET pair for PhCl

Directing groups ortho and para SET complex is only formed at ipso and para positions

MO's for the complex between PhNO₂ and NO₂⁺ *ortho*

HOMO

para

HOMO

HOMO - 1

HOMO - 1

Rearrangement of N-Nitroanilines

SET in aniline nitration?

	Reação	Energia de Ionização (IE) (eV)ª	∆EI para a reação com NO ₂ + (kcal/mol)
	$NO_2 \rightarrow NO_2^+ + e$	9.586 ± 0.002	0.00
	$PhNH_2 \rightarrow PhNH_2^+ + e$	7.72 ± 0.002	-43.0
p-MeC	$OC_6H_4NH_2 \rightarrow p-MeOC_6H_4NH_2^+ + e$	7.58 ± 0.01	-46.3
p-MeS	$SC_6H_4NH_2 \rightarrow p-MeSC_6H_4NH_2^+ + e$	7.60 ± 0.01	-45.8
p-Me	$eC_6H_4NH_2 \rightarrow p-MeC_6H_4NH_2^+ + e$	7.85 ± 0.05	-40.0
m-Me	$eC_6H_4NH_2 \rightarrow m-MeC_6H_4NH_2^+ + e$	7.50 ± 0.02	-40.7
p-H	$FC_6H_4NH_2 \rightarrow p-FC_6H_4NH_2^+ + e$	8.18	-32.4
p-C	$IC_6H_4NH_2 \rightarrow p-CIC_6H_4NH_2^+ + e$	7.8	-41.2
m-l	$FC_6H_4NH_2 \rightarrow m-FC_6H_4NH_2^+ + e$	8.33	-29.0
m-C	$IC_6H_4NH_2 \rightarrow m-CIC_6H_4NH_2^+ + e$	8.1 ± 0.1	-34.3
m-B	$rC_6H_4NH_2 \rightarrow m-BrC_6H_4NH_2^+ + e$	7.7 ± 0.1	-43.5
p-NC	$CC_6H_4NH_2 \rightarrow p-NCC_6H_4NH_2^+ + e$	8.64 ± 0.04	-21.8
p-O ₂ N	$NC_6H_4NH_2 \rightarrow p-O_2NC_6H_4NH_2^+ + e$	8.34 ± 0.01	-28.7

Hammett correlation

Rate controlling step: Depends on the ionization potential of ArH

Conclusions: Nitration

- Reaction of NO_2^+ with ArH \rightarrow SET
- Solvation makes
 - **Deactivated aromatics** \rightarrow Aducts formed
 - Activated aromatics \rightarrow SET is favored
- SET mechanism is surely involved in nitration of activated aromatics
- Mechanistic continuum between polar mechanism (Ingold-Hughes) and SET: Depends on ArH and on solvation
- The higher the HOMO of ArH, lower the "barrier" for the SET and aromatic is more easily undergo oxidation.

Nitration: Mechanistic Continuum

Polar Mechanism (Ingold-Hughes)

•Substrates with high PI (meta directing substituents)

•Non oxidant electrophiles

•Solvents with high ε (H₂SO₄, polar protic solvents, etc)

•Substrates with low PI (orthopara directing substituents)

SET

Mechanism

•Oxidant electrophiles

•Solvents with low ε (aprotic polar solvents, SO₂, CH₂Cl₂, etc)

Other Typical Electrophilic Aromatic Substitution

Friedel-Crafts Alkylation
Friedel-Crafts Acylation
Halogenation
Sulfonation
Nitrosation
Metalation

Acetilação do tolueno

Ativação pelo CH₃

Permite a formação de um complexo σ em para, porém menos estável que o complexo π correspondente.

Complexo σ em orto não foi encontrado.

Pequenas diferenças de Energia X efeito estérico?

Parâmetros geométricos

Ângulo do grupo acílio nos complexos é muito semelhante ao do radical acila

Complexo π X complexo SET

Acetilação do nitrobenzeno

Dois mínimos encontrados: ambos de interação do íon acetílio com a base n do grupo nitro (átomo de oxigênio), mais forte do que a base π do anel.

Kinetic Isotope Effect for Propionilation and Benzoylation of Aromatics

 $CH_3CH_2CO^+SbF_6^-$ Toluene-benzene- d_6

Toluene-benzene- d_6 Tolueno- d_5 -benzeno $k_{\rm H}:k_{\rm D}$ = **2.84** Benzeno- d_6

 $k_{\rm H}:k_{\rm D}$ = **3.06** Toluene- d_5

 $C_6H_5CO^+SbF_6^$ *p*-Xilene-benzene

p-Xileno-benzeno- d_6 Toluene- d_5 -benzene Toluene- d_5 -benzene $k_{\rm H}:k_{\rm D}$ = **1.80** Benzene- d_5

 $k_{\rm H}:k_{\rm D}$ = **1.65** Toluene- d_5

G. A. Olah, J. Lukas, E. Lukas; JACS 1969, 91(19), 5319

Other kinetic isotopic effects:

Reaction	Туре	k _H /k _D
$PhNMe_2 + Br_2$	Halogenation	2.6
PhOMe + ICl	Halogenation	3.8
$PhBr + H_2SO_4$ (oleum)	Sulfonation	1.5
$PhOH + NO^+$	Nitrosation	4.1
$PhH + Hg(OAc)_2$	Metalation	6.0

Conclusion

The electrophilic aromatic substitution mechanism can be a spectrum of possibilities between the SET or Polar (Ingold-Hughes) mechanism, dependending on the oxidative character of the electrophile and the ionization potential of the aromatic substrate.

Solvent/medium effects can influence the reactional pathway

Perspectives

- Reinvestigation of other electrophilic aromatic and alifatic substitution under the SET paradigm
- Electrophiles, Superelectrophiles or Superoxidants?
- The single electron transfer process and theories of reactivity
- Development of new reaction under the new paradigm.

Team

Coworkers

- José Walkimar de M. Carneiro (IQ/UFF)
- Marcos N. Eberlin (IQ/UNICAMP)
- Regina Sparapan (IQ/UNICAMP)
- Adão A. Sabino (IQ/UNICAMP)
- Liliane (IQ/UNICAMP)
- Márcio Contrucci de Mattos (IQ/UFRJ)

Students

- Fabio Luis Rodrigues (IC/UFRJ)
- Leonardo Almeida (PG/DQO/UFRJ)
- Gabriela Fonseca (PG/DQO/UFRJ)
- Felipe Fleming Pereira (PG/DQO/UFRJ)
- Jorge Freitas (IQ/UFF)

Students (Cont.)

- Rachel Moraes (IC/UFRJ)
- Leandro (IC/UFRJ)
- Ana Cristina Paes Leme (IC/UFRJ)
- Vivian Mazzei (IC/UFRJ)
- Thiago Muza (IC/UFRJ)
- Rejane Magalhães Ramos (IC/UFRJ)
- Carolina Leite Araujo (IC/UFRJ)

Acknowledgements

CNPq

- CNPq (PROFIX)
- FAPERJ (Cientista Jovem do Nosso Estado)

Instituto de Química

Universidade Federal do Rio de Janeiro

Prof. Pierre M. Esteves (pesteves@iq.ufrj.br) www.iq.ufrj.br/~pesteves

